

Tai-Chu Lau,<sup>a</sup> Chi-Chiu Ko,<sup>a</sup> NG Siu Mui, Stella<sup>b</sup>
<sup>a</sup> Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
<sup>b</sup> School of Science and Technology, Hong Kong Metropolitan University

## Abstract

METROPOLITAN

UNIVERSITY

The increasing anthropogenic emission of  $CO_2$  has caused many global environmental issues i.e. global warming, ocean acidification and species extinction.

Conversion of  $CO_2$  to useful chemicals including fuels utilizing clean and sustainable solar light becomes a promising approach that can not only tackle  $CO_2$  emission caused global issues but also provide a clean and sustainable energy source simultaneously.

In this project, a series of novel multinuclear metal complexes consists of earth abundance metals and bridging polypyridyl ligands will be designed and synthesized as potential  $CO_2$  reduction photocatalysts.

The catalytic performance of the new metal complexes will also be studied using (i) Gas Chromatograpy with Thermal Conductivity Detector (GC-TCD) for CO and  $H_2$  generation, (ii) ion chromatography for formate ion.

# Introduction

The acceleration of artificial photosynthesis research in recent years have revealed the really crucial and challenging issues in photoconversion of  $CO_2$  into valuable chemicals and fuels. Some primary challenging issues include the extremely complicated photocatalytic reaction mechanisms and pathways, low efficiency and selectivity of different products, complex activation and adsorption of  $CO_2$  molecules and richness of excited state dynamics and the semiconductor surface chemistry.

## Objective

- To design, synthesize and characterized a series of earth abundant metal complexes with polypyridyl ligands
- To study the CO<sub>2</sub> reduction catalytic properties of the novel complexes.
- To deign, develop and study the photocatalytic systems systemically and rationally.

#### Results

Many new multinuclear polypyridyl transitional metal complexes have been successfully synthesized and characterized by IR spectroscopy, mass spectrometry and xray crystallography. The ORTEP diagrams are shown below.



 $[(\mu_{3}-O)(\mu-OMe)Fe_{3}(\mu-Phen-O)_{4}(OMe)]^{+} [(\mu_{3}-O)(\mu-OMe)Fe_{3}(\mu-Phen-O)_{4}Cl]^{+}$ 



[FeNi(PhenO)<sub>3</sub>(PhenOH)<sub>2</sub>]<sup>2+</sup>

[CuFe<sub>2</sub>O(PhenO)<sub>4</sub>(ClO<sub>4</sub>)(H<sub>2</sub>O)]<sup>+</sup>

#### Acknowledgements

This work is supported by HKMU R & D Fund (RD/2022/1.13).