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Microbial communities in mangrove ecosystem differs by
intertidal location and microhabitat of pneumatophores
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INTRODUCTION
. Mangrove ecosystem supports rich prokaryotic diversity (solely comprising more
than 95% of the total microbial biomass) which remains yet to be explored

. The high abundance of prokaryotes is associated with their role in various
biogeochemical processes operating in mangrove ecology.

. Mangroves are characterized by periodic tidal cycles which induce wide variation in
environmental conditions across small spatiotemporal scales.

. This leads to the formation of characteristic microbial zones with variable
community structure and function.

SAMPLING PLAN AND METHODOLOGY

» Ting Kok mangrove was divided into three different zones: mudflat (TK_MF),
mangrove (TK_M) and pneumatophore associated sediments (TK_PSAM).

»  The metagenomic DNA was extracted for library preparation and sequencing using
Illumina platform DNBSEQ- G400

»  Taxonomic and functional classification of the metadata was performed using
BLASTX against the RefSeq and KEGG database on MG-RAST server

CONCLUSION

v Proteobacteria was the most dominant phyla in all the microhabitats
with Bacteroidetes, the second most, Firmicutes (TK_MF_ and
TK_M_) and cyanobacteria (TK_PSAM) were the third abundant
phyla.

v' Archaeal distribution with the most abundant Thaumarchaeota
remained uniform in all the three habitats.

v' Genes associated with CO, to methane production pathway of
methanogenesis was dominant in all three zones, with relatively high
proportion in TK_MF_and TK_M_.

v' The relative abundance of nitrate reduction pathway of nitrogen
metabolism was high in TK_PSAM_ whereas nitrogen fixation and the
denitrification pathway were high in TK_MF_ and TK_M_ samples.

v This is the first attempt to unveil prokaryotic zonation in mangrove
ecology using NGS sequencing.
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